

LA-UR-18-27463

Approved for public release; distribution is unlimited.

Title: Resolving the Position of a Fission Source in a 3He Well Counter Using

List-Mode Analysis

Author(s): Giha, Nathan Patrick

Ruch, Marc Lavi

Intended for: Keepin School Lightning Presentations

Issued: 2018-08-06

Resolving the Position of a Fission Source in a ³He Well Counter Using List-Mode Analysis

Keepin Lightning Presentation August 8, 2018

Nathan P. Giha^{1,2}, Marc L. Ruch¹

¹Los Alamos National Laboratory

Nuclear Engineering and Nonproliferation

NEN-1

²University of Michigan

Summer Fun: San Antonio Hot Springs

Nathan Giha

American, born 1997

Bondin at the Springs

2018

Photograph

Courtesy the artist

Nathan Giha (NEN-1)

- Educational Background
 - University of Michigan
 - B.S.E. in Nuclear Engineering and Radiological Sciences, expected May 2019

- Division
 - o NEN-1
 - Mentored by UMich alumnus Marc Ruch
- Research
 - Resolving the Position of a Fission
 Source in a ³He Well Counter Using List-Mode Analysis

Overview and Motivation

- Well coincidence counters are:
 - Widely used in safeguards to verify mass declarations of SNM by measuring fission neutrons
 - Normally used with a shift register, which sums all signals together
 - Designed to be insensitive to fission source position
 - Not being used to the instrument's full potential
 - List-mode analysis can yield more information
 - Detect attempted "spoofing" with multiple sources
- Goal: Locate a point fission source within a well coincidence counter using list-mode analysis

E. C. Miller et al.

JCC-51 AWCC (canberra.com)

Principles of the Technique

Concept:

- If ³He tubes are read out separately, one can determine the position of a fission neutron source due to:
 - Anisotropy of neutron emission
 - Geometric efficiency of individual tubes
- The angle between detected coincident neutrons will be different, depending on the distance from the source to the well's center

Method

Simulation:

- Epithermal neutron multiplicity counter (ENMC) in MCNP [2]
- FREYA fission model [3] anisotropy of neutron emission must be modeled
- PTRAC card collect eventby-event tube-specific data

Pre-Processing:

 Truncate PTRAC file into list-mode file of neutron captures on ³He

Method

Processing:

- Perform shift register analysis on pairs of ³He tubes
 - Vary spacing between selected tubes and calculate coincidences
 - For each spacing, sum all coincidences from tube pairs together

Method

Post-Processing:

- Resolving radius:
 - Generate calibration curve
 - Simulate a range of positions that span the radius of the well
 - Perform linear fit on coincidencespacing plot for each position
 - Plot derivative of fit vs. radius, fit with quadratic, and invert
- Resolving polar angle:
 - Plot coincidences vs. adjacent detector pairs
 - Fit Gaussian
 - Convert mean of Gaussian to polar angle

Results and Error Analysis

- Performed statistical bootstrapping [4] to generate 50 smaller listmode files for each source position
- Error is largest at the center of the well where:
 - Systematic error from the calibrations are ε_r = 0.5 cm and ε_θ = 1.3°
 - o Random errors are $\sigma(\epsilon_r) = 0.5$ cm and $\sigma(\epsilon_\theta) = 1.8^\circ$

Future Work

- Generate additional statistics through longer simulations and more extensive bootstrapping
- Perform rigorous analysis on multiple neutron source scenarios
- Investigate distributed fission sources
 - Ability to accurately locate
 - Ability to distinguish from point source
- Utilize coincidence data from outside rings
- Explore other fitting functions for coincidence vs. spacing data
- Validate simulation work with measurements

References

[1] Reilly, D. et al. "Fast and Epithermal Neutron Multiplicity Counter," LA-UR-07-1602.

[2] Weinmann-Smith, Robert et al. "A comparison of Monte Carlo fission models for safeguards neutron coincidence counters." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 903. 10.1016/j.nima.2018.06.055.

[3] Efron, B. "Bootstrap Methods: Another Look at the Jackknife." Ann. Statist. 7 (1979), no. 1, 1-26. doi:10.1214/aos/1176344552.

BACKUP SLIDES

Visualization of Error

Processing Scripts

- VaryPosition.py: Generates MCNP input files for a range of source positions specified in a config file
- **Ptrac_auto.py:** Takes PTRAC (.p) file as input and outputs truncated list-mode data (.po) in the following format for neutron captures in ³He:

NPS Cell Time NPS Cell Time

- **ShoeLace.py:** Takes list-mode data (.po) and generates N statistically bootstrapped files (.pob) with M histories each
- **PulseTrain.py:** Reads list-mode data (.po & .pob) and generates tube-specific pulse trains, performs shift register analysis, and generates figures and relevant data for post-processing (.pldat)
- AutoAnalyze.bat: Performs all of the above tasks for a range of source positions, specified in a computer generated config file

Processing Scripts Cont.

• ReadGraphs.py: Takes processed data (.pldat) and performs position calibration and/or estimation, as well as error analysis and figure generation

Notes on Simulations and Statistical Bootstrapping

- 31 Positions
- ~2e7 fissions per position yields a 20GB PTRAC file
- 50 statistically bootstrapped list-mode files per position
 - o 6e6 fissions each
 - Neutron yield approximately corresponds to a 10 minute measurement of 100g of reactor-grade plutonium [PANDA manual]

Fitting

Calibration positions:

Calibration curve inversion:

$$-\delta = ar^{2} + br + c$$

$$r = \frac{-b + \sqrt{b^{2} - 4a(c + \delta)}}{2a}$$